$w=1 /\left[\sigma^{2}(F)+(0.02 F)^{2}\right.$	Atomic scattering factors
$+1.00]$ (Killean \&	from International Tables
Lawrence, 1969)	for X-ray Crystallography
$(\Delta / \sigma)_{\max }=0.002$	(1974, Vol. IV, Tables
	2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	v	$こ$	$U_{\text {eq }}$
Hg 1	0.2518 (2)	0.02260 (6)	0.36781 (7)	0.0248 (3)
Hg 2	0.7070 (2)	0.18874 (7)	0.22898 (7)	0.0282 (3)
Sel	0.2260 (4)	0.1344 (2)	0.6136 (2)	0.0234 (9)
Se 2	0.2659 (4)	0.0675 (2)	0.0934 (2)	0.0269 (9)
O1	0.268 (3)	0.007 (1)	0.606 (1)	$0.03318)$
O 2	-0.105 (3)	0.141 (1)	0.623 (1)	0.024 (6)
O3	0.269 (3)	0.162 (1)	0.471 (1)	0.032 (8)
O4	0.292 (4)	-0.034 (1)	0.177 (1)	0.037 (9)
O5	0.586 (3)	0.108 (1)	0.083 (1)	0.029 (8)
O6	0.174 (3)	0.150 (1)	(0.197 (1)	0.043 (9)
O7	0.772 (4)	0.261 (1)	0.387 (1)	0.045 (9)

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{Hgl}-\mathrm{Ol}$	2.751 (15)	Hg2-O6	2.742 (16)
$\mathrm{Hgl}-\mathrm{Ol}^{\text {i }}$	2.671 (14)	$\mathrm{Hg} 2-\mathrm{O}^{\text {i }}$	2.447 (16)
$\mathrm{Hgl}-\mathrm{Ol}^{\text {ii }}$	2.459 (14)	$\mathrm{Hg} 2-\mathrm{O} 7$	2.072 (16)
$\mathrm{Hgl}-\mathrm{O}^{2}$	2.294 (13)	$\mathrm{Sc} 1-\mathrm{Ol}$	1.704 (15)
$\mathrm{Hgl}-\mathrm{O} 3$	2.199 (15)	$\mathrm{Se} 1-\mathrm{O} 2$	1.675 (14)
$\mathrm{Hgl}-\mathrm{O} 4$	2.332 (15)	$\mathrm{Se} 1-\mathrm{O} 3$	1.696 (15)
$\mathrm{Hgl}-\mathrm{O} 6$	2.617 (17)	$\mathrm{Se} 2-\mathrm{O} 4$	1.663 (16)
$\mathrm{Hg} 2-\mathrm{Ol}{ }^{11}$	3.219 (15)	$\mathrm{Se} 2-\mathrm{O} 5$	1.705 (14)
$\mathrm{Hg} 2-\mathrm{O} 2^{\text {Ii }}$	2.757 (13)	Se2-O6	1.699 (17)
$\mathrm{Hg} 2-\mathrm{O} 5$	2.064 (15)		
$\mathrm{Ol}-\mathrm{Sel}-\mathrm{O} 2$	100.1 (7)	O4-Se2-O5	103.8 (9)
$\mathrm{Ol}-\mathrm{Sel}-\mathrm{O} 3$	98.3 (7)	O4-Se2-O6	97.9 (8)
O2-Sel-O3	102.4 (7)	O5-Se2-O6	97.1 (8)

Symmetry codes: (i) $-x,-y, 1-z:$ (ii) $1-x,-y, 1-z:$ (iii) $1+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $1+x, y, z$.
The data were corrected for decay. As the absorption is high, both ψ-scan (North, Phillips \& Mathews, 1968) and spherical absorption corrections were applied (International Tables for X-ray Crystallography, 1967, Vol. II, Table 5.3.6B) with $T_{\max }$ $=0.995$ and $T_{\min }=0.705$ for the ψ-scan correction, and $T_{\text {max }}=0.069$ and $T_{\text {min }}=0.042$ for the spherical correction. The maximum and minimum electron densities in the final difference Fourier map are located within $1 \AA$ of Hg atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN PROCESS (Fair, 1990). Program(s) used to solve structure: MULTAN (Main et al., 1982). Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1119). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Dubler, E., Beck, L., Linowsky, L. \& Jameson, G. B. (1981). Acta Cryst. B37, 2214-2217.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius. Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Cristal Structure Analssis. Enraf-Nonius, Delft. The Netherlands. Grdenic, D. (1965). Q. Rei: Chem. Soc. 19. 303-328.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee. USA.
Killean. R. C. G. \& Lawrence, J. L. (1969). Acta Crıst. B25, 17501752.

Kohn, K., Inoue, K.. Horie, O. \& Akimoto. S.-I. (1976). J. Solid State Chem. 18, 27-37.
Koskenlinna, M. \& Valkonen. J. (1995a). Acta Crist. C51, 1040-1042. Koskenlinna, M. \& Valkonen, J. (1995b). Acta Cisst. C51. 1737-1739. Main, P., Fiske, S. J., Hull, S. E.. Lessinger, L., Germain. G.. Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A Sistem of Computer Programs for the Automatic Solution of Cristal Structures from X-ral Diffraction Data. Universities of York, England, and Louvain, Bclgium.
North. A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crust. A24, 351-359.
Valkonen, J. (1994a). Acta Crist. C50, 991-994.
Valkonen. J. (1994b). Acta Cisst. C50. 1381-1384
Zachariasen. W. H. (1963). Acta Crist. 16. 1139-1144

Acta Cryst. (1996). C52, 1072-1074

Amminemercury(II) Selenite

Markus Koskenlinna, ${ }^{a} \dagger$ Jussi Valkonen ${ }^{b}$ and Roland FRÖHLICH ${ }^{\text {b }} \ddagger$
${ }^{a}$ Helsinki University of Technology; Department of Chemical Engineering, FIN-02150 Espoo. Finland, and ${ }^{b}$ University of Jyväskylä, Department of Chemistṛ; PO Box 35, FIN-4035I Jyväskylä, Finland. E-mail: valkonen@jykem.chem.jyu.fi

(Received 20 November 1995: accepted 7 December 1995)

Abstract

The title compound \{amminemercury(II) trioxoselenate(IV), $\left.\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)\right] \mathrm{SeO}_{3}\right\}$ has a structure comprising corrugated edge-sharing chains of HgNO_{5} octahedra and SeO_{3} pyramids. The chains are apparently held in position by hydrogen bonds. The octahedra are $2+4$ distorted. The selenite group exhibits one significantly differing $\mathrm{Se}-\mathrm{O}$ bond length involving an O atom coordinated to three Hg^{11} ions.

Comment

We have reported the structures of three different mercury(II) selenites, $\mathrm{HgSeO}_{3}, \mathrm{Hg}_{3}\left(\mathrm{HSeO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ and $\mathrm{Hg}_{2}\left(\mathrm{SeO}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$, previously (Koskenlinna \& Valkonen, 1995a,b, 1996). These compounds contain $\mathrm{Hg}^{\mathrm{II}}$ ions coordinated by six, six and seven, and five and seven O

[^0]atoms, respectively. All of the polyhedra have two short $\mathrm{Hg}-\mathrm{O}$ bonds with bond angles approaching 180°. Thus, all Hg^{11} ions are coordinated with $2+3-5$ bond schemes, as is usual in Hg^{11} polyhedra (Dubler, Beck, Linowsky \& Jameson, 1981). We report here the preparation of a mercury(II) selenite containing an ammonia group, and compare the structure of this compound with those determined previously.

The structure of the title compound comprises corrugated chains of HgNO_{5} octahedra and SeO_{3} pyramids parallel to the b axis. The SeO_{3} pyramids share edges with two adjacent octahedra, which in turn share an edge with an adjacent octahedron. The $\mathrm{Se}^{\mathrm{IV}}$-ion lone pairs protrude into the spaces between the chains. The chains are apparently held in position by three hydrogen bonds (judged by distance): $\mathrm{N} \cdots \mathrm{O} 2(x+1, y-1$, z) $[2.873(9) \AA \mathrm{A}], \mathrm{N} \cdots \mathrm{O} 2(x+1, y, z)[2.857(9) \AA$ A and $\mathrm{N} \cdots \mathrm{O} 3(2-x, 2-y, 1-z)[2.894(9) \AA$ A]. Thus, the N atom lies in one chain, the two O 2 atoms lie in a second chain and O 3 lies in a third chain. In $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Se}_{2} \mathrm{O}_{5}$, the $\mathrm{N} \cdots \mathrm{O}$ distances involved in hydrogen bonding are between 2.782 (4) and 2.954 (4) A (Makarova, Muradyan, Vinogradova \& Simonov, 1990). Other N...O distances in the title compound are longer than $3.3 \AA$.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of the unit cell with displacement ellipsoids shown at the 50% probability level. The a axis is horizontal and c axis is angled slightly from the vertical. Thin lines indicate possible hydrogen bonds.

The coordination polyhedron of the Hg^{11} ion is a $2+4$ distorted octahedron formed by five O atoms and a N atom; the O atoms are contributed by three selenite groups. The polyhedron has two short bonds, $\mathrm{Hg}-\mathrm{N}$ $[2.099$ (6) \AA A $]$ and $\mathrm{Hg}-\mathrm{O} 1[2.129(5) \AA$, with an $\mathrm{N}-$ $\mathrm{Hg}-\mathrm{Ol}$ angle of $169.2(3)^{\circ}$.

An ammine ligand coordinated to an $\mathrm{Hg}^{\text {II }}$ ion is observed in $\left(\mathrm{NH}_{3} \mathrm{HgN}_{2} \mathrm{~S}\right)_{2}$ and $\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{I}_{2}\right] \mathrm{S}_{4} \mathrm{~N}_{4}$, where the corresponding $\mathrm{Hg}-\mathrm{N}$ distances are 2.47 (2) and 2.30 (2) \AA (Martan \& Weiss, 1984). The $\mathrm{Hg}-\mathrm{N}$ bond in the title compound is markedly shorter. However, in $\left(\mathrm{NH}_{3} \mathrm{HgN}_{2} \mathrm{~S}\right)_{2}$, the two other $\mathrm{Hg}-\mathrm{N}$ bonds arising from the $\mathrm{N}_{2} \mathrm{~S}$ ligand are 2.092 (2) and 2.098 (24) \AA, which are comparable with that in the title compound. The strong hydrogen bonds proposed for $\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)\right] \mathrm{SeO}_{3}$, as indicated by the $\mathrm{N} \cdots \mathrm{O}$ distances (Brown \& Altermatt, 1985), might cause polarization of the ammine ligand and result in this short $\mathrm{Hg}-\mathrm{N}$ distance.

The four long $\mathrm{Hg}-\mathrm{O}$ bonds in $\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)\right] \mathrm{SeO}_{3}$ range from 2.496 (6) to 2.809 (6) A. In the octahedra in HgSeO_{3} and $\mathrm{Hg}_{3}\left(\mathrm{HSeO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$, the four long bonds vary from 2.593 (10) to 2.641 (11) \AA and from 2.398 (9) to 2.561 (7) \AA, respectively. Three of the four long bonds in the title compound [ranging from 2.496 (6) to 2.700 (7) \AA] lie within the range observed for the other two selenites, but the longest bond is significantly longer and is close to the limit of what would usually be considered to be a bonding distance.

Each selenite group bridges three Hg^{11} ions. O 1 is bonded to three Hg^{11} ions and the other two O atoms are each bonded to one Hg^{11} ion. The selenite group is markedly distorted, with the longest $\mathrm{Se}-\mathrm{O}$ bond [1.740 (6) Á] involving the O atom which is coordinated to three $\mathrm{Hg}^{1 I}$ ions. The other two bonds [1.657 (5) and $1.678(6) \AA$] lie in the normal range for $\mathrm{Se}-\mathrm{O}$ bonds. The distortion is also expressed in the $\mathrm{O}-\mathrm{Se}-\mathrm{O}$ bond angles, which range from 98.6 (3) to 103.9 (3) ${ }^{\circ}$.

Experimental

The title compound was prepared from a suspension of HgO in aqueous selenious acid, which was adjusted to a pH of $8-9$ by the addition of excess aqueous ammonia. The compound crystallized at $310-330 \mathrm{~K}$ within a few weeks. The presence of ammonia in the structure was confirmed by IR analysis.

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)\right] \mathrm{SeO}$
$M_{r}=344.58$
Monoclinic
$P 2_{1} / n$
$a=6.456(1) \AA$
$b=4.969(1) \AA$
$c=14.658$ (2) \AA
$\beta=101.82(1)^{\circ}$
$V=460.3(1) \AA^{3}$
$Z=4$
$D_{x}=4.97 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=16-22^{\circ}$
$\mu=41.145 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Prism
$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$ Colourless

1129 observed reflections $[I>3 \sigma(I)]$
$\omega / 2 \theta$ scans
$R_{\text {int }}=0.052$
Absorption correction:
ψ scan (North, Phillips \& Mathews, 1968) and spherical
$T_{\text {min }}=0.021, T_{\text {max }}=$ 0.091

2951 measured reflections 1480 independent reflections
$\theta_{\text {max }}=29.98^{\circ}$
$h=-9 \rightarrow 9$
$k=0 \rightarrow 6$
$l=-20 \rightarrow 20$

2 standard reflections frequency: 120 min intensity decay: 2.1%

Refinement

Refinement on F
$R=0.029$
$w R=0.036$
$S=1.192$
1129 reflections
56 parameters
H atoms not located
$w=1 /\left[\sigma^{2}(F)+(0.02 F)^{2}\right.$
+1.00] (Killean \&
Lawrence, 1969)
$(\Delta / \sigma)_{\text {max }}=0.00 \mathrm{I}$

$$
\begin{aligned}
& \Delta \rho_{\max }=3.38 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-1.41 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: isotropic (Zachariasen, 1963)

Extinction coefficient: 0.65×10^{-6}
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	こ	$U_{\text {eq }}$
Hg	0.95584 (4)	0.46626 (6)	0.29788 (2)	0.0232 (1)
Se	0.7220 (1)	1.0075 (1)	0.41717 (5)	0.0230 (3)
Ol	0.8099 (9)	0.9399 (11)	0.3150 (4)	0.026 (2)
O2	0.4640 (9)	0.9825 (12)	0.3757 (5)	0.029 (3)
O3	0.7659 (9)	1.3404 (12)	0.4238 (4)	0.033 (3)
N	1.2516 (10)	0.4844 (1.3)	0.3896 (5)	0.024 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Hg}-\mathrm{Ol}^{1}$	$2.809(6)$	$\mathrm{Hg}-\mathrm{N}$	$2.099(6)$
$\mathrm{Hg}-\mathrm{Ol}$	$2.566(6)$	$\mathrm{Se}-\mathrm{Ol}$	$1.74(6)$
$\mathrm{Hg}-\mathrm{Ol}^{11}$	$2.129(5)$	$\mathrm{Se}-\mathrm{O} 2$	$1.657(5)$
$\mathrm{Hg}-\mathrm{O}^{11}$	$2.7(0)(7)$	$\mathrm{Se}-\mathrm{O} 3$	$1.678(6)$
$\mathrm{Hg}-\mathrm{O}^{1}$	$2.496(6)$		
$\mathrm{Ol}-\mathrm{Se}-\mathrm{O} 2$	$98.6(3)$	$\mathrm{O} 2-\mathrm{Se}-\mathrm{O} 3$	$103.9(3)$
$\mathrm{Ol}-\mathrm{Se}-\mathrm{O} 3$	$99.2(3)$		
Symmetry codes: (i)	$x, y-1, z ;$ (ii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$		

As the absorption is high, both ψ-scan (North, Phillips \& Mathews, 1968) and spherical absorption corrections were applied (International Tables for X-ray Crystallography, 1967, Vol. II, Table 5.3.6B), with $T_{\text {max }}=0.993$ and $T_{\text {min }}=0.321$ for the ψ-scan correction, and $T_{\text {max }}=0.092$ and $T_{\text {min }}=0.065$ for the spherical correction. The maximum and minimum electron densities in the final difference Fourier map are ca $0.8 \AA$ from Hg .

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN PROCESS (Fair, 1990). Program(s) used to solve structure: direct methods (MULTAN; Main et al., 1982). Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

Lists of structure factors. anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BRI136). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CHI 2HU, England.

References

Brown, D. \& Altermatt, D. (1985). Acta Crrst. B41, 244-247.
Dubler, E., Beck, L., Linowsky, L. \& Jameson, G. B. (1981). Acta Cryst. B37, 2214-2217.
Enraf-Nonius (1989). CAD-4 Soffware. Version 5.0. Enraf-Nonius. Delft. The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Killean, R. C. G. \& Lawrence. J. L. (1969). Acta Crist. B25. 17501752.

Koskenlinna, M. \& Valkonen. J. (1995a). Acta Cnst. C51. 1040-1042.
Koskenlinna, M. \& Valkonen. J. (1995b). Acta Cnist. C51. 1737-1739.
Koskenlinna, M. \& Valkonen, J. (1996). Acta Cnist. C52, 1070-1072.
Main, P.. Fiske, S. J., Hull. S. E.. Lessinger, L.. Germain. G.. Declercq. J.-P. \& Woolfson. M. M. (1982). MULTAN11/82. A Sistem of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Makarova. I. P.. Muradyan. L. A.. Vinogradova. I. S. \& Simonov, V. I. (1990). Ferroelectrics. 107. 275-280.

Martan. H. \& Wciss, J. (1984). Z. Anorg. Allg. Chem. 515, 225-229.
North. A. C. T.. Phillips. D. C. \& Mathews, F. S. (1968). Acta Crust. A24. 351-359.
Zachariasen, W. H. (1963). Acta Crast. 16. 1139-1144.

[^0]: \dagger Present address: Technology Devclopment Centre. PO Box 69 (Malminkatu 34), FiN-00101 Helsinki, Finland.
 \ddagger Present address: Organisch-Chemisches Institut der Universität Münster. Corrensstrasse 40, D-48149 Münster, Germany.

